

# **HEXFET® POWER MOSFET**

## **IRFN450**

### **N-CHANNEL**

## 500 Volt, 0.415Ω HEXFET

HEXFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry achieves very low on-state resistance combined with high transconductance.

HEXFET transistors also feature all of the well-establish advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, and high energy pulse circuits.

The Surface Mount Device (SMD-1) package represents another step in the continual evolution of surface mount technology. The SMD-1 will give designers the extra flexibility they need to increase circuit board density. International Rectifier has engineered the SMD-1 package to meet the specific needs of the power market by increasing the size of the termination pads, thereby enhancing thermal and electrical performance.

## **Product Summary**

| Part Number | BVDSS | RDS(on) | q   |
|-------------|-------|---------|-----|
| IRFN450     | 500V  | 0.415Ω  | 12A |

#### Features:

- Avalanche Energy Rating
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Surface Mount
- Light-weight

# **Absolute Maximum Ratings**

|                                        | Parameter                            | IRFN450             | Units |
|----------------------------------------|--------------------------------------|---------------------|-------|
| ID @ VGS = 10V, TC = 25°C              | Continuous Drain Current             | 12.0                |       |
| ID @ VGS = 10V, TC = 100°C             | Continuous Drain Current             | 8.0                 | _ A   |
| IDM                                    | Pulsed Drain Current ①               | 48                  |       |
| P <sub>D</sub> @ T <sub>C</sub> = 25°C | Max. Power Dissipation               | 150                 | W     |
|                                        | Linear Derating Factor               | 1.2                 | W/K ® |
| VGS                                    | VGS Gate-to-Source Voltage           |                     | V     |
| EAS                                    | Single Pulse Avalanche Energy ②      | 750                 | mJ    |
| IAR                                    | Avalanche Current ①                  | 12.0                | А     |
| EAR                                    | EAR Repetitive Avalanche Energy ①    |                     | mJ    |
| dv/dt                                  | Peak Diode Recovery dv/dt ®          | 3.5                 | V/ns  |
| TJ                                     | Operating Junction                   | -55 to 150          |       |
| TSTG                                   | Storage Temperature Range            |                     | °C    |
|                                        | Package Mounting Surface Temperature | 300 (for 5 seconds) |       |
|                                        | Weight                               | 2.6 (typical)       | g     |

# Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

|                                     | Parameter                                    | Min. | Тур. | Max.  | Units | Test Conditions                                                                                                                       |
|-------------------------------------|----------------------------------------------|------|------|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------|
| BVDSS                               | Drain-to-Source Breakdown Voltage            | 500  | _    | _     | V     | VGS = 0V, ID = 1.0mA                                                                                                                  |
| ΔBV <sub>DSS</sub> /ΔT <sub>J</sub> | Temperature Coefficient of Breakdown Voltage | _    | 0.78 | _     | V/°C  | Reference to 25°C, I <sub>D</sub> = 1.0mA                                                                                             |
| RDS(on)                             | Static Drain-to-Source                       | _    | _    | 0.415 |       | VGS = 10V, ID = 8A 4                                                                                                                  |
|                                     | On-State Resistance                          | _    | _    | 0.515 | Ω     | VGS = 10V, ID = 12A                                                                                                                   |
| VGS(th)                             | Gate Threshold Voltage                       | 2.0  | _    | 4.0   | V     | VDS = VGS, ID = 250μA                                                                                                                 |
| gfs                                 | Forward Transconductance                     | 5.5  | _    | _     | S (U) | VDS > 15V, IDS = 8A ④                                                                                                                 |
| IDSS                                | Zero Gate Voltage Drain Current              | _    | _    | 25    |       | VDS = 0.8 x Max Rating, VGS = 0V                                                                                                      |
|                                     |                                              | _    | _    | 250   | μΑ    | VDS = 0.8 x Max Rating                                                                                                                |
|                                     |                                              |      |      |       |       | VGS = 0V, TJ = 125°C                                                                                                                  |
| IGSS                                | Gate-to-Source Leakage Forward               | _    | _    | 100   | nA    | VGS = 20V                                                                                                                             |
| IGSS                                | Gate-to-Source Leakage Reverse               | _    | _    | -100  | '''   | VGS = -20V                                                                                                                            |
| Qg                                  | Total Gate Charge                            | 55   | _    | 120   |       | VGS =10V, ID = 12A                                                                                                                    |
| Qgs                                 | Gate-to-Source Charge                        | 5.0  | _    | 19    | nC    | VDS = Max. Rating x 0.5                                                                                                               |
| Qgd                                 | Gate-to-Drain ("Miller") Charge              | 27   | _    | 70    |       | see figures 6 and 13                                                                                                                  |
| td(on)                              | Turn-On Delay Time                           | _    | _    | 35    |       | VDD = 250V, ID = 12A,                                                                                                                 |
| tr                                  | Rise Time                                    | _    | _    | 190   | ns    | $R_G = 2.35\Omega$ , $VGS = 10V$                                                                                                      |
| td(off)                             | Turn-Off Delay Time                          | _    | _    | 170   | 115   |                                                                                                                                       |
| tf                                  | FallTime                                     | _    | _    | 130   |       | see figure 10                                                                                                                         |
| LD                                  | Internal Drain Inductance                    | _    | 2.0  | _     | nH    | Measured from the drain lead, 6mm (0.25 in.) from package to center of die.  Modified MOSFET symbol showing the internal inductances. |
| Ls                                  | Internal Source Inductance                   | _    | 6.5  | _     | 11111 | Measured from the source lead, form (0.25 in.) from package to source bonding pad.                                                    |
| C <sub>iss</sub>                    | Input Capacitance                            | _    | 2700 | _     |       | VGS = 0V, VDS = 25V                                                                                                                   |
| Coss                                | Output Capacitance                           |      | 600  | _     | pF    | f = 1.0 MHz                                                                                                                           |
| C <sub>rss</sub>                    | Reverse Transfer Capacitance                 |      | 240  |       |       | see figure 5                                                                                                                          |

# **Source-Drain Diode Ratings and Characteristics**

|                 | Parameter                              |                                                                                                  | Min. | Тур. | Max. | Units | Test Conditions                                                     |
|-----------------|----------------------------------------|--------------------------------------------------------------------------------------------------|------|------|------|-------|---------------------------------------------------------------------|
| IS              | Continuous Source Current (Body Diode) |                                                                                                  | _    | _    | 12   | Α     | Modified MOSFET symbol showing the                                  |
| ISM             | Pulse Source Current (Body D           | iode) ①                                                                                          | _    | _    | 48   |       | integral reverse p-n junction rectifier.                            |
|                 |                                        |                                                                                                  |      |      |      |       |                                                                     |
| VSD             | Diode Forward Voltage                  |                                                                                                  | _    | _    | 1.7  | V     | T <sub>j</sub> = 25°C, I <sub>S</sub> = 12A, V <sub>GS</sub> = 0V 4 |
| t <sub>rr</sub> | Reverse Recovery Time                  |                                                                                                  |      | _    | 1600 | ns    | Tj = 25°C, IF = 12A, di/dt ≤ 100A/μs                                |
| QRR             | Reverse Recovery Charge                |                                                                                                  | _    | _    | 14   | μC    | V <sub>DD</sub> ≤ 50V ④                                             |
| ton             | Forward Turn-On Time                   | Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$ . |      |      |      |       |                                                                     |

# **Thermal Resistance**

|                       | Parameter            | Min. | Тур. | Max. | Units | Test Conditions                    |
|-----------------------|----------------------|------|------|------|-------|------------------------------------|
| R <sub>th</sub> JC    | Junction-to-Case     | _    | _    | 0.83 |       |                                    |
| R <sub>th</sub> J-PCB | Junction-to-PC Board | _    | TBD  | _    | K/W   | Soldered to a copper clad PC board |

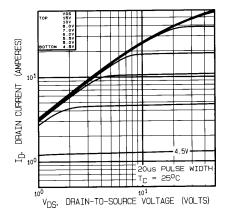



Fig. 1 — Typical Output Characteristics  $T_C = 25^{\circ}C$ 

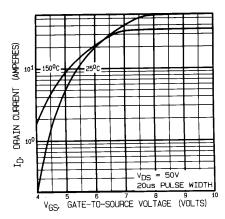



Fig. 3 — Typical Transfer Characteristics

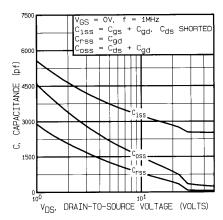



Fig. 5 — Typical Capacitance Vs. Drain-to-Source Voltage

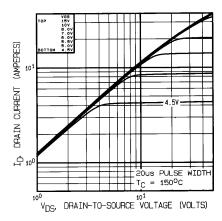



Fig. 2 — Typical Output Characteristics  $T_C = 150$  °C

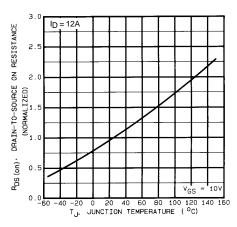



Fig. 4 — Normalized On-Resistance Vs.Temperature

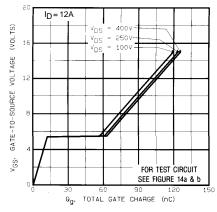



Fig. 6 — Typical Gate Charge Vs. Gate-to-Source Voltage

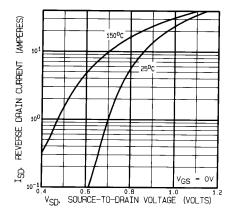



Fig. 7 — Typical Source-to-Drain Diode Forward Voltage

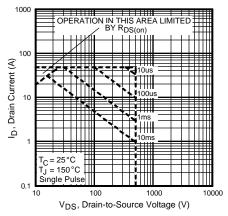



Fig. 8 — Maximum Safe Operating Area

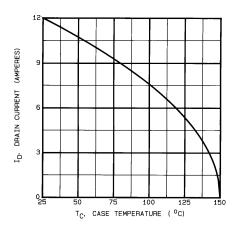



Fig. 9 — Maximum Drain Current Vs. Case Temperature

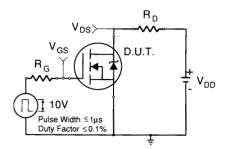



Fig. 10a — Switching Time Test Circuit

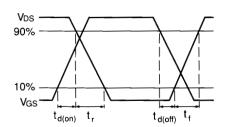



Fig. 10b — Switching Time Waveforms



Fig. 11 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

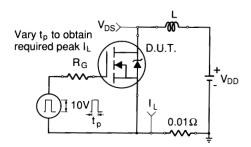



Fig. 12a — Unclamped Inductive Test Circuit

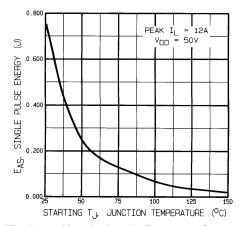



Fig. 12c — Max. Avalanche Energy vs. Current

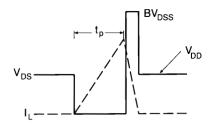



Fig. 12b — Unclamped Inductive Waveforms

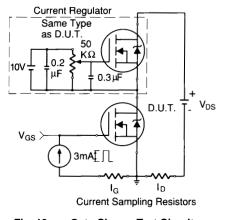



Fig. 13a — Gate Charge Test Circuit

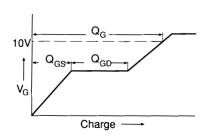
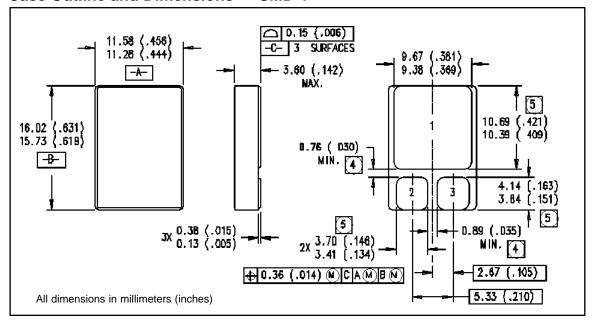




Fig. 13b — Basic Gate Charge Waveform

- Repetitive Rating; Pulse width limited by maximum junction temperature. (see figure 11)
- ② @ V<sub>DD</sub> = 50V, Starting T<sub>J</sub> = 25°C, E<sub>AS</sub> =  $[0.5 * L * (I_L^2) * [BV_{DSS}/(BV_{DSS}-V_{DD})]$ Peak I<sub>L</sub> = 12A, V<sub>GS</sub> = 10V, 25 ≤ R<sub>G</sub> ≤ 200 $\Omega$
- ③ ISD ≤ 12A, di/dt ≤ 130 A/ $\mu$ s, VDD ≤ BVDSS, T,J ≤ 150°C
- ④ Pulse width ≤ 300  $\mu$ s; Duty Cycle ≤ 2%
- ⑤ K/W = °C/W W/K = W/°C

## Case Outline and Dimensions — SMD-1



# International TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

http://www.irf.com/ Data and specifications subject to change without notice. 9/96